Revisiting Stochastic Loss Networks: Structures and Approximations
We consider fundamental properties of stochastic loss networks, seeking to improve on the so-called Erlang fixed-point approximation. We propose a family of mathematical approximations for estimating the stationary loss probabilities and show that they always converge exponentially fast, provide asy...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2019-08, Vol.44 (3), p.890-918 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider fundamental properties of stochastic loss networks, seeking to improve on the so-called Erlang fixed-point approximation. We propose a family of mathematical approximations for estimating the stationary loss probabilities and show that they always converge exponentially fast, provide asymptotically exact results, and yield greater accuracy than the Erlang fixed-point approximation. We further derive structural properties of the inverse of the classical Erlang loss function that characterize the region of capacities that ensures a workload is served within a set of loss probabilities. We then exploit these results to efficiently solve a general class of stochastic optimization problems involving loss networks. Computational experiments investigate various issues of both theoretical and practical interest, and demonstrate the benefits of our approach. |
---|---|
ISSN: | 0364-765X 1526-5471 |
DOI: | 10.1287/moor.2018.0949 |