On a Theorem of Kadets and Pełczyński

Necessary and sufficient conditions are found under which a symmetric space X on [0,1] of type 2 has the following property, which was first proved for the spaces L p , p > 2, by Kadets and Pełczyński: if { u n } n = 1 ∞ is an unconditional basic sequence in X such that ‖ u n ‖ X ≍ ‖ u n ‖ L 1 ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Notes 2019-07, Vol.106 (1-2), p.172-182
1. Verfasser: Astashkin, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Necessary and sufficient conditions are found under which a symmetric space X on [0,1] of type 2 has the following property, which was first proved for the spaces L p , p > 2, by Kadets and Pełczyński: if { u n } n = 1 ∞ is an unconditional basic sequence in X such that ‖ u n ‖ X ≍ ‖ u n ‖ L 1 , n ∈ ℕ , then the norms of the spaces X and L 1 are equivalent on the closed linear span [ u n ] in X . For sequences of martingale differences, this implication holds in any symmetric space of type 2.
ISSN:0001-4346
1067-9073
1573-8876
DOI:10.1134/S0001434619070216