Friction and wear of diamondlike carbon on fine-graindiamond
Friction and wear behavior of ion-beam-deposited diamondlikecarbon (DLC) films coated on chemical-vapor-deposited (CVD),fine-grain diamond coatings were examined in ultrahigh vacuum,dry nitrogen, and humid air environments. The DLC films wereproduced by the direct impact of an ion beam (composed of...
Gespeichert in:
Veröffentlicht in: | Tribology letters 1997-06, Vol.3 (2), p.141-145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Friction and wear behavior of ion-beam-deposited diamondlikecarbon (DLC) films coated on chemical-vapor-deposited (CVD),fine-grain diamond coatings were examined in ultrahigh vacuum,dry nitrogen, and humid air environments. The DLC films wereproduced by the direct impact of an ion beam (composed of a 3 :17 mixture of Ar and CH4) at ion energies of 1500 and700 eV. Sliding friction experiments were conducted withhemispherical CVD diamond pins sliding on four differentcarbon-base coating systems: DLC films on CVD diamond; DLC filmson silicon; as-deposited, fine-grain CVD diamond; andcarbon-ion-implanted, fine-grain CVD diamond on silicon. Resultsindicate that in ultrahigh vacuum theion-beam-deposited DLC films on fine-grain CVD diamond (similarto the ion-implanted CVD diamond) greatly decrease both thefriction and wear of fine-grain CVD diamond films and providesolid lubrication. In dry nitrogen and in humid air,ion-beam-deposited DLC films on fine-grain CVD diamond films alsohad a lowsteady-state coefficient of friction and a low wear rate. Thesetribological performance benefits, coupled with a wider range ofcoating thicknesses, led to longer endurance life and improvedwear resistance for the DLC deposited on fine-grain CVD diamondin comparison to the ion-implanted diamond films. Thus, DLCdeposited on fine-grain CVD diamond films can be an effectivewear-resistant, lubricating coating regardless of environment. |
---|---|
ISSN: | 1023-8883 1573-2711 |
DOI: | 10.1023/A:1019160501019 |