Self-Lubricating PTFE-Based Composites with Black Phosphorus Nanosheets

Black phosphorus (BP), a newly emerging two-dimensional material, has recently received considerable attention. Our recent work suggested that BP nanosheets exhibit extraordinary mechanical and lubrication properties. In the present work, the tribological properties of polyetheretherketone (PEEK)/po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2018-06, Vol.66 (2), p.1-11, Article 61
Hauptverfasser: Lv, Yan, Wang, Wei, Xie, Guoxin, Luo, Jianbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black phosphorus (BP), a newly emerging two-dimensional material, has recently received considerable attention. Our recent work suggested that BP nanosheets exhibit extraordinary mechanical and lubrication properties. In the present work, the tribological properties of polyetheretherketone (PEEK)/polytetrafluoroethylene (PTFE) and carbon fiber (CF)/PTFE composites with BP nanosheets have been investigated. The morphologies and surface element distribution of the worn tracks of the tribopair surfaces were examined by different analytical techniques. The results show that the coefficients of friction (COFs) of both the PEEK/PTFE and CF/PTFE composites decreased dramatically after the addition of BP nanosheets, and the minimum COF of the composite was 0.04, which was a quarter of that of the PTFE composite without BP nanosheets. After BP nanosheets were added into the composites, the wear rate of the PTFE/PEEK composite decreased dramatically, while that of the CF/PTFE composite increased significantly with the increase in the filler concentration. The analysis of the lubrication mechanism of the PTFE composite with BP nanosheets suggested that BP nanosheets could be constantly supplied into the contact area and gradually formed a BP film composed of phosphorus oxide and phosphoric acid on the counterpart surface instead of the formation of PTFE transfer film. The formed BP transfer film promoted the friction reduction and the disappearance of the adhesive wear.
ISSN:1023-8883
1573-2711
DOI:10.1007/s11249-018-1010-5