UHMWPE Hybrid Nanocomposites for Improved Tribological Performance Under Dry and Water-Lubricated Sliding Conditions

To tap the full potential of polymers to be used as tribo-materials under water lubrication, it is very important to improve their resistance to water uptake on the one hand and improve their strength and load bearing capacity on the other so that their performance under these conditions is not dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2017-09, Vol.65 (3), p.1-10, Article 102
Hauptverfasser: Ali, Annas Bin, Abdul Samad, M., Merah, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To tap the full potential of polymers to be used as tribo-materials under water lubrication, it is very important to improve their resistance to water uptake on the one hand and improve their strength and load bearing capacity on the other so that their performance under these conditions is not deteriorated. Hence, a unique approach of fabricating a hybrid polymer nanocomposite reinforced with nanoclay for improving the resistance to water uptake and carbon nanotubes (CNTs) to improve the mechanical/tribological properties is undertaken. Ultrahigh molecular weight polyethylene (UHMWPE) hybrid nanocomposites were fabricated via ball milling followed by hot pressing method. Functionalized multi-wall CNTs and C15A organoclay were used as nanofillers in UHMWPE matrix. Hybrid nanocomposites were developed with CNT loadings of 0.5, 1.5 and 3.0 wt% while keeping C15A organoclay content fixed at an optimized value of 1.5 wt%. Initially, the hybrid nanocomposites were optimized under dry sliding conditions whereby a loading of 1.5 wt% of CNTs and 1.5 wt% C15A organoclay resulted in the maximum reduction in the specific wear rate by about 64% as compared to pristine UHMWPE. Later, tribological performance of the optimized hybrid nanocomposite was compared with pristine UHMWPE and its UHMWPE nanocomposites under water-lubricated conditions sliding against a 440C stainless steel ball for 150,000 cycles. The specific wear rate showed a reduction by ~46% for the 1.5 wt% CNTs hybrid nanocomposites as compared to pristine UHMWPE under water lubrication. The improved resistance to wear was attributed to the uniform dispersion of both the nanofillers, namely CNTs and C15A organoclay which effectively increased the load bearing capacity of UHMWPE. Moreover, the excellent barrier properties of the platelet-like structure of C15A clay which presented a torturous path for the diffusion of the water molecule in UHMWPE reduced the softening of the surface layer leading to better resistance to wear under water lubrication.
ISSN:1023-8883
1573-2711
DOI:10.1007/s11249-017-0884-y