Iterative Processes for Ill-Posed Problems with a Monotone Operator

We consider the problem on constructing a stable approximate solution of an inverse problem formulated as a nonlinear irregular equation with a monotone operator. We suggest a two-stage method based on Lavrentiev’s regularization scheme and iterative approximation with the use of either modified New...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian advances in mathematics 2019-07, Vol.29 (3), p.217-229
1. Verfasser: Vasin, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem on constructing a stable approximate solution of an inverse problem formulated as a nonlinear irregular equation with a monotone operator. We suggest a two-stage method based on Lavrentiev’s regularization scheme and iterative approximation with the use of either modified Newton’s method or a regularized κ-process. We prove that the iterative processes converge and the iterations possess the Fejér property. We show that our method generates a regularization algorithm under a certain adjustment of control parameters. On the set of source-like representable solutions, we find an optimal-order error estimate for the algorithm.
ISSN:1055-1344
1934-8126
DOI:10.3103/S1055134419030076