Iterative Processes for Ill-Posed Problems with a Monotone Operator
We consider the problem on constructing a stable approximate solution of an inverse problem formulated as a nonlinear irregular equation with a monotone operator. We suggest a two-stage method based on Lavrentiev’s regularization scheme and iterative approximation with the use of either modified New...
Gespeichert in:
Veröffentlicht in: | Siberian advances in mathematics 2019-07, Vol.29 (3), p.217-229 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem on constructing a stable approximate solution of an inverse problem formulated as a nonlinear irregular equation with a monotone operator. We suggest a two-stage method based on Lavrentiev’s regularization scheme and iterative approximation with the use of either modified Newton’s method or a regularized κ-process. We prove that the iterative processes converge and the iterations possess the Fejér property. We show that our method generates a regularization algorithm under a certain adjustment of control parameters. On the set of source-like representable solutions, we find an optimal-order error estimate for the algorithm. |
---|---|
ISSN: | 1055-1344 1934-8126 |
DOI: | 10.3103/S1055134419030076 |