Symmetrizations of Distance Functions and f-Quasimetric Spaces
We prove theorems on the topological equivalence of distance functions on spaces with weak and reverse weak symmetries. We study the topology induced by a distance function ρ under the condition of the existence of a lower symmetrization for ρ by an f -quasimetric. For ( q 1 , q 2 )-metric spaces (...
Gespeichert in:
Veröffentlicht in: | Siberian advances in mathematics 2019-07, Vol.29 (3), p.202-209 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove theorems on the topological equivalence of distance functions on spaces with weak and reverse weak symmetries. We study the topology induced by a distance function
ρ
under the condition of the existence of a lower symmetrization for
ρ
by an
f
-quasimetric. For (
q
1
,
q
2
)-metric spaces (
X, ρ
), we also study the properties of their symmetrizations min {
ρ
(
x, y
),
ρ
(
y, x
)} and max {
ρ
(
x, y
),
ρ
(
y, x
)}. The relationship between the extreme points of a (
q
1
q
2
)-quasimetric
ρ
and its symmetrizations min{
ρ
(
x, y
),
ρ
(
y, x
)} and max {
ρ
(
x, y
),
ρ
(
y, x
)}. |
---|---|
ISSN: | 1055-1344 1934-8126 |
DOI: | 10.3103/S1055134419030052 |