Symmetrizations of Distance Functions and f-Quasimetric Spaces

We prove theorems on the topological equivalence of distance functions on spaces with weak and reverse weak symmetries. We study the topology induced by a distance function ρ under the condition of the existence of a lower symmetrization for ρ by an f -quasimetric. For ( q 1 , q 2 )-metric spaces (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian advances in mathematics 2019-07, Vol.29 (3), p.202-209
1. Verfasser: Greshnov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove theorems on the topological equivalence of distance functions on spaces with weak and reverse weak symmetries. We study the topology induced by a distance function ρ under the condition of the existence of a lower symmetrization for ρ by an f -quasimetric. For ( q 1 , q 2 )-metric spaces ( X, ρ ), we also study the properties of their symmetrizations min { ρ ( x, y ), ρ ( y, x )} and max { ρ ( x, y ), ρ ( y, x )}. The relationship between the extreme points of a ( q 1 q 2 )-quasimetric ρ and its symmetrizations min{ ρ ( x, y ), ρ ( y, x )} and max { ρ ( x, y ), ρ ( y, x )}.
ISSN:1055-1344
1934-8126
DOI:10.3103/S1055134419030052