Limit Theorems for Tapered Toeplitz Quadratic Functionals of Continuous-time Gaussian Stationary Processes
Let { X ( t ), t ∈ ℝ} be a centered real-valued stationary Gaussian process with spectral density f . The paper considers a question concerning asymptotic distribution of tapered Toeplitz type quadratic functional Q T h of the process X ( t ), generated by an integrable even function g and a taper f...
Gespeichert in:
Veröffentlicht in: | Journal of contemporary mathematical analysis 2019-07, Vol.54 (4), p.222-239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {
X
(
t
),
t
∈ ℝ} be a centered real-valued stationary Gaussian process with spectral density
f
. The paper considers a question concerning asymptotic distribution of tapered Toeplitz type quadratic functional
Q
T
h
of the process
X
(
t
), generated by an integrable even function
g
and a taper function
h
. Sufficient conditions in terms of functions
f
,
g
and
h
ensuring central limit theorems for standard normalized quadratic functionals
Q
T
h
are obtained, extending the results of Ginovyan and Sahakyan (Probability Theory and Related Fields
138
, 551–579, 2007) to the tapered case and sharpening the results of Ginovyan and Sahakyan (Electronic Journal of Statistics
13
, 255–283, 2019) for the Gaussian case. |
---|---|
ISSN: | 1068-3623 1934-9416 |
DOI: | 10.3103/S1068362319040058 |