The highly efficient air oxidation of aryl and alkyl boronic acids by a microwave-assisted protocol under transition metal-free conditions

Molecular oxygen is the most important green-oxidant due to its excellent properties. However, the effective utilization of molecular oxygen remains a major challenge in modern chemistry. Herein, we report the development a rapid, green and efficient microwave-assisted protocol for the air oxidation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2019, Vol.21 (17), p.4614-4618
Hauptverfasser: Yin, Weiyan, Pan, Xizhi, Leng, Wenxi, Chen, Jian, He, Haifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular oxygen is the most important green-oxidant due to its excellent properties. However, the effective utilization of molecular oxygen remains a major challenge in modern chemistry. Herein, we report the development a rapid, green and efficient microwave-assisted protocol for the air oxidation of boronic acids to phenols and alcohols under transition metal-free conditions. In the presence of KOH and DMSO, high yields of the expected phenols and alcohol were obtained with microwave-assistance, and a variety of functional groups were tolerated in this procedure. Notably, this transition metal-free method represents a breakthrough in both organic synthesis and green chemistry for the oxidative hydroxylation of boronic acids to phenols and alcohols. A rapid, green and efficient microwave-assisted protocol is developed for the air oxidation of boronic acids to phenols and alcohols under transition metal-free conditions.
ISSN:1463-9262
1463-9270
DOI:10.1039/c9gc01965k