Fabrication of core–shell CoFe2O4@HAp nanoparticles: a novel magnetic platform for biomedical applications
Core–shell CoFe2O4@HAp magnetic nanoparticles were successfully prepared by a simple two-step hydrothermal process, and their physicochemical and magnetic properties were studied. X-ray diffraction and Fourier transform infrared spectroscopy of the as-synthesized samples reveal that the nanoparticle...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2019, Vol.43 (34), p.13584-13593 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Core–shell CoFe2O4@HAp magnetic nanoparticles were successfully prepared by a simple two-step hydrothermal process, and their physicochemical and magnetic properties were studied. X-ray diffraction and Fourier transform infrared spectroscopy of the as-synthesized samples reveal that the nanoparticles are composed of both phases (HAp@CoFe2O4). The core–shell formation was confirmed by TEM and from the magnetization studies using a vibrating sample magnetometer (VSM), and the ferromagnetic nature of the synthesized core–shell nanoparticles at room temperature was confirmed by saturation magnetization (Ms) and coercivity values of 9.04 emu g−1 and 0.1 T, respectively. It has been observed that heat treatment enhanced the saturation magnetization when compared to the as-prepared samples. The reason for this enhanced magnetic property after heat treatment is discussed based on the magnetic moment and anisotropy calculations. The potential cytocompatibility of the sample was confirmed by fibroblast 3T3 cells. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/c9nj02510c |