Dynamic Maps for Automated Driving and UAV Geofencing

The past few years have witnessed a remarkable rise in interest in driver-less cars; and naturally, in parallel, the demand for an accurate and reliable object localization and mapping system is higher than ever. Such a system would have to provide its subscribers with precise information within clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications 2019-08, Vol.26 (4), p.54-59
Hauptverfasser: Maiouak, Mariem, Taleb, Tarik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The past few years have witnessed a remarkable rise in interest in driver-less cars; and naturally, in parallel, the demand for an accurate and reliable object localization and mapping system is higher than ever. Such a system would have to provide its subscribers with precise information within close range. There have been many previous research works that have explored the different possible approaches to implement such a highly dynamic mapping system in an intelligent transportation system setting, but few have discussed its applicability toward enabling other 5G verticals and services. In this article we start by describing the concept of dynamic maps. We then introduce the approach we took when creating a spatio-temporal dynamic maps system by presenting its architecture and different components. After that, we propose different scenarios where this fairly new and modern technology can be adapted to serve other 5G services, in particular, that of UAV geofencing, and finally, we test the object detection module and discuss the results.
ISSN:1536-1284
1558-0687
DOI:10.1109/MWC.2019.1800544