Weighted weak-type (1, 1) estimates for radial Fourier multipliers via extrapolation theory
In this paper, we prove a weighted estimate for the Bochner–Riesz operator at the critical index that is stronger than the weak-type (1,1) for A 1 weights, in the sense that the latter can be obtained via extrapolation arguments from the former. In addition, this estimate can be transferred to avera...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2019-07, Vol.138 (1), p.83-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove a weighted estimate for the Bochner–Riesz operator at the critical index that is stronger than the weak-type (1,1) for
A
1
weights, in the sense that the latter can be obtained via extrapolation arguments from the former. In addition, this estimate can be transferred to averages in order to deduce weighted weak-type (1,1) results for general radial Fourier multipliers. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-019-0018-6 |