On a structure-preserving matrix factorization for the determinants of cyclic pentadiagonal Toeplitz matrices

In recent years, a number of numerical algorithms of O ( n ) for computing the determinants of cyclic pentadiagonal matrices have been developed. In this paper, a cost-efficient numerical algorithm for the determinant of an n -by- n cyclic pentadiagonal Toeplitz matrix is proposed whose computationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2019-09, Vol.57 (8), p.2007-2017
1. Verfasser: Jia, Ji-Teng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, a number of numerical algorithms of O ( n ) for computing the determinants of cyclic pentadiagonal matrices have been developed. In this paper, a cost-efficient numerical algorithm for the determinant of an n -by- n cyclic pentadiagonal Toeplitz matrix is proposed whose computational cost is estimated at O ( log n ) . The algorithm is based on a structure-preserving matrix factorization and a three-term recurrence relation. We provide some numerical results with simulations in Matlab implementation in order to demonstrate the accuracy and effectiveness of the proposed algorithm, and its competitiveness with other existing algorithms.
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-019-01053-w