A priori growth estimates for nonnegative supertemperatures and solutions of semilinear heat equations in a Lipschitz domain
In a bounded Lipschitz domain, we give a priori growth estimates near the parabolic boundary for a certain class of nonnegative supertemperatures which includes nonnegative continuous solutions of semilinear heat equations of the form ∂ t u ( x , t ) − Δ u ( x , t ) = V ( x , t ) u p ( x , t ) , whe...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2019-07, Vol.138 (1), p.441-463 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a bounded Lipschitz domain, we give a priori growth estimates near the parabolic boundary for a certain class of nonnegative supertemperatures which includes nonnegative continuous solutions of semilinear heat equations of the form
∂
t
u
(
x
,
t
)
−
Δ
u
(
x
,
t
)
=
V
(
x
,
t
)
u
p
(
x
,
t
)
,
where
V
(
x, t
) and
p
(
x, t
) are nonnegative Borel measurable functions satisfying weak conditions. A growth rate and the range of
p
depend on the shape of a domain. Our estimates make improvements to a priori estimates given by Bidaut-Véron (1998), Poláčik–Quittner–Souplet (2007) and Taliaferro (2007, 2011). Also, the
C
1
-regularity with respect to the spatial variables and a pointwise gradient estimate are shown. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-019-0046-2 |