A priori growth estimates for nonnegative supertemperatures and solutions of semilinear heat equations in a Lipschitz domain

In a bounded Lipschitz domain, we give a priori growth estimates near the parabolic boundary for a certain class of nonnegative supertemperatures which includes nonnegative continuous solutions of semilinear heat equations of the form ∂ t u ( x , t ) − Δ u ( x , t ) = V ( x , t ) u p ( x , t ) , whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2019-07, Vol.138 (1), p.441-463
1. Verfasser: Hirata, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a bounded Lipschitz domain, we give a priori growth estimates near the parabolic boundary for a certain class of nonnegative supertemperatures which includes nonnegative continuous solutions of semilinear heat equations of the form ∂ t u ( x , t ) − Δ u ( x , t ) = V ( x , t ) u p ( x , t ) , where V ( x, t ) and p ( x, t ) are nonnegative Borel measurable functions satisfying weak conditions. A growth rate and the range of p depend on the shape of a domain. Our estimates make improvements to a priori estimates given by Bidaut-Véron (1998), Poláčik–Quittner–Souplet (2007) and Taliaferro (2007, 2011). Also, the C 1 -regularity with respect to the spatial variables and a pointwise gradient estimate are shown.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-019-0046-2