Nonsmooth Kantorovich–Newton Methods: Hypotheses and Auxiliary Problems

In Newton’s method 0 ∈ f ( x k ) + G ( x k )( x k + 1 − x k ) for solving a nonsmooth equation f ( x ) = 0, the type of approximation of f by some (generally multivalued) mapping G determines not only the convergence behavior of the method, but also the difficulty and the concrete form of the auxili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2019-09, Vol.47 (3), p.639-657
Hauptverfasser: Klatte, Diethard, Kummer, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 3
container_start_page 639
container_title Vietnam journal of mathematics
container_volume 47
creator Klatte, Diethard
Kummer, Bernd
description In Newton’s method 0 ∈ f ( x k ) + G ( x k )( x k + 1 − x k ) for solving a nonsmooth equation f ( x ) = 0, the type of approximation of f by some (generally multivalued) mapping G determines not only the convergence behavior of the method, but also the difficulty and the concrete form of the auxiliary problems. With G ( x ) = ∂ f ( x ) (Clarke’s Jacobian)—like for locally convergent semismooth Newton methods—and for various other generalized “derivatives”, the inclusion is a canonical one, i.e., it describes the usual Newton step if f is continuously differentiable near x k . In our paper, we are interested in Kantorovich-type statements of convergence and study which meaningful hypotheses and auxiliary problems for particular pairs ( f , G ) may replace those of the classical smooth case. In particular, we point out—theoretically and by an example—why the related hypotheses cannot be checked for canonical methods even if f is piecewise linear.
doi_str_mv 10.1007/s10013-019-00348-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2277505136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2277505136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a5d2eed6be48c8f21a97f152be0ed4d3c479dbbda4e05e6ea7b2aecd537243223</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAkyRmA322YlTtgoBrSiFASQ2y4kvNFUbFzsFuvEOvCFPgiEINpa7G_4fpx8hh5wdc8bUSYiTC8r4gDImZE7lFumBYCkFgHz79-YPu2QvhDljLMsz1SPjqWvC0rl2llyZpnXePdfl7OPtfYovrWuSa2xnzobTZLRZRREGDIlpbDJcv9aL2vhNcutdscBl2Cc7lVkEPPjZfXJ_cX53NqKTm8vx2XBCS5GJlprUAqLNCpR5mVfAzUBVPIUCGVppRSnVwBaFNRJZihkaVYDB0qZCgRQAok-OutyVd09rDK2eu7VvYqUGUCplKY9FfQKdqvQuBI-VXvl6Gf_VnOkvZLpDpiMy_Y1My2gSnSlEcfOI_i_6H9cnHxZxAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2277505136</pqid></control><display><type>article</type><title>Nonsmooth Kantorovich–Newton Methods: Hypotheses and Auxiliary Problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Klatte, Diethard ; Kummer, Bernd</creator><creatorcontrib>Klatte, Diethard ; Kummer, Bernd</creatorcontrib><description>In Newton’s method 0 ∈ f ( x k ) + G ( x k )( x k + 1 − x k ) for solving a nonsmooth equation f ( x ) = 0, the type of approximation of f by some (generally multivalued) mapping G determines not only the convergence behavior of the method, but also the difficulty and the concrete form of the auxiliary problems. With G ( x ) = ∂ f ( x ) (Clarke’s Jacobian)—like for locally convergent semismooth Newton methods—and for various other generalized “derivatives”, the inclusion is a canonical one, i.e., it describes the usual Newton step if f is continuously differentiable near x k . In our paper, we are interested in Kantorovich-type statements of convergence and study which meaningful hypotheses and auxiliary problems for particular pairs ( f , G ) may replace those of the classical smooth case. In particular, we point out—theoretically and by an example—why the related hypotheses cannot be checked for canonical methods even if f is piecewise linear.</description><identifier>ISSN: 2305-221X</identifier><identifier>EISSN: 2305-2228</identifier><identifier>DOI: 10.1007/s10013-019-00348-4</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Convergence ; Hypotheses ; Mapping ; Mathematics ; Mathematics and Statistics ; Newton methods</subject><ispartof>Vietnam journal of mathematics, 2019-09, Vol.47 (3), p.639-657</ispartof><rights>Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a5d2eed6be48c8f21a97f152be0ed4d3c479dbbda4e05e6ea7b2aecd537243223</citedby><cites>FETCH-LOGICAL-c363t-a5d2eed6be48c8f21a97f152be0ed4d3c479dbbda4e05e6ea7b2aecd537243223</cites><orcidid>0000-0003-1859-3249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10013-019-00348-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10013-019-00348-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Klatte, Diethard</creatorcontrib><creatorcontrib>Kummer, Bernd</creatorcontrib><title>Nonsmooth Kantorovich–Newton Methods: Hypotheses and Auxiliary Problems</title><title>Vietnam journal of mathematics</title><addtitle>Vietnam J. Math</addtitle><description>In Newton’s method 0 ∈ f ( x k ) + G ( x k )( x k + 1 − x k ) for solving a nonsmooth equation f ( x ) = 0, the type of approximation of f by some (generally multivalued) mapping G determines not only the convergence behavior of the method, but also the difficulty and the concrete form of the auxiliary problems. With G ( x ) = ∂ f ( x ) (Clarke’s Jacobian)—like for locally convergent semismooth Newton methods—and for various other generalized “derivatives”, the inclusion is a canonical one, i.e., it describes the usual Newton step if f is continuously differentiable near x k . In our paper, we are interested in Kantorovich-type statements of convergence and study which meaningful hypotheses and auxiliary problems for particular pairs ( f , G ) may replace those of the classical smooth case. In particular, we point out—theoretically and by an example—why the related hypotheses cannot be checked for canonical methods even if f is piecewise linear.</description><subject>Convergence</subject><subject>Hypotheses</subject><subject>Mapping</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Newton methods</subject><issn>2305-221X</issn><issn>2305-2228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQxy0EEqXwAkyRmA322YlTtgoBrSiFASQ2y4kvNFUbFzsFuvEOvCFPgiEINpa7G_4fpx8hh5wdc8bUSYiTC8r4gDImZE7lFumBYCkFgHz79-YPu2QvhDljLMsz1SPjqWvC0rl2llyZpnXePdfl7OPtfYovrWuSa2xnzobTZLRZRREGDIlpbDJcv9aL2vhNcutdscBl2Cc7lVkEPPjZfXJ_cX53NqKTm8vx2XBCS5GJlprUAqLNCpR5mVfAzUBVPIUCGVppRSnVwBaFNRJZihkaVYDB0qZCgRQAok-OutyVd09rDK2eu7VvYqUGUCplKY9FfQKdqvQuBI-VXvl6Gf_VnOkvZLpDpiMy_Y1My2gSnSlEcfOI_i_6H9cnHxZxAw</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Klatte, Diethard</creator><creator>Kummer, Bernd</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1859-3249</orcidid></search><sort><creationdate>20190915</creationdate><title>Nonsmooth Kantorovich–Newton Methods: Hypotheses and Auxiliary Problems</title><author>Klatte, Diethard ; Kummer, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a5d2eed6be48c8f21a97f152be0ed4d3c479dbbda4e05e6ea7b2aecd537243223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convergence</topic><topic>Hypotheses</topic><topic>Mapping</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Newton methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klatte, Diethard</creatorcontrib><creatorcontrib>Kummer, Bernd</creatorcontrib><collection>CrossRef</collection><jtitle>Vietnam journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klatte, Diethard</au><au>Kummer, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsmooth Kantorovich–Newton Methods: Hypotheses and Auxiliary Problems</atitle><jtitle>Vietnam journal of mathematics</jtitle><stitle>Vietnam J. Math</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>639</spage><epage>657</epage><pages>639-657</pages><issn>2305-221X</issn><eissn>2305-2228</eissn><abstract>In Newton’s method 0 ∈ f ( x k ) + G ( x k )( x k + 1 − x k ) for solving a nonsmooth equation f ( x ) = 0, the type of approximation of f by some (generally multivalued) mapping G determines not only the convergence behavior of the method, but also the difficulty and the concrete form of the auxiliary problems. With G ( x ) = ∂ f ( x ) (Clarke’s Jacobian)—like for locally convergent semismooth Newton methods—and for various other generalized “derivatives”, the inclusion is a canonical one, i.e., it describes the usual Newton step if f is continuously differentiable near x k . In our paper, we are interested in Kantorovich-type statements of convergence and study which meaningful hypotheses and auxiliary problems for particular pairs ( f , G ) may replace those of the classical smooth case. In particular, we point out—theoretically and by an example—why the related hypotheses cannot be checked for canonical methods even if f is piecewise linear.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s10013-019-00348-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1859-3249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2305-221X
ispartof Vietnam journal of mathematics, 2019-09, Vol.47 (3), p.639-657
issn 2305-221X
2305-2228
language eng
recordid cdi_proquest_journals_2277505136
source Springer Nature - Complete Springer Journals
subjects Convergence
Hypotheses
Mapping
Mathematics
Mathematics and Statistics
Newton methods
title Nonsmooth Kantorovich–Newton Methods: Hypotheses and Auxiliary Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsmooth%20Kantorovich%E2%80%93Newton%20Methods:%20Hypotheses%20and%20Auxiliary%20Problems&rft.jtitle=Vietnam%20journal%20of%20mathematics&rft.au=Klatte,%20Diethard&rft.date=2019-09-15&rft.volume=47&rft.issue=3&rft.spage=639&rft.epage=657&rft.pages=639-657&rft.issn=2305-221X&rft.eissn=2305-2228&rft_id=info:doi/10.1007/s10013-019-00348-4&rft_dat=%3Cproquest_cross%3E2277505136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2277505136&rft_id=info:pmid/&rfr_iscdi=true