Controlling the stereospecific bonding motif of Au-thiolate links

Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-09, Vol.11 (33), p.15567-15575
Hauptverfasser: Colazzo, Luciano, Mohammed, Mohammed S. G, Gallardo, Aurelio, Abd El-Fattah, Zakaria M, Pomposo, José A, Jelínek, Pavel, de Oteyza, Dimas G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is a robust bonding configuration that displays interesting properties. It is generated spontaneously at room temperature and can be used for the production of extended molecular nanostructures. In this work we explore the behavior of 1,4-bis(4-mercaptophenyl)benzene (BMB) on the Au(111) surface, which results in the formation of 2D crystalline metal-organic assemblies stabilized by this type of Au-thiolate bonds. We show how to control the thiolate's stereospecific bonding motif and thereby choose whether to form ordered arrays of Au 3 BMB 3 units with embedded triangular nanopores or linearly stacked metal-organic chains. The former turn out to be thermodynamically favored structures and display confinement of the underneath Au(111) surface state. The electronic properties of single molecules as well as of the 2D crystalline self-assemblies have been characterized both on the metal-organic backbone and inside the associated pores. Organosulfur compounds at the interface of noble metals are extremely interesting systems at both the fundamental and applied levels. We report control over the selective stabilization of linear or porous Au-thiolate isomers.
ISSN:2040-3364
2040-3372
DOI:10.1039/c9nr04383g