Vorticity Measures and the Inviscid Limit

We consider a sequence of Leray-Hopf weak solutions of the 2D Navier-Stokes equations on a bounded domain, in the vanishing viscosity limit. We provide sufficient conditions on the associated vorticity measures, away from the boundary, which ensure that as the viscosity vanishes the sequence converg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-11, Vol.234 (2), p.575-593
Hauptverfasser: Constantin, Peter, Lopes Filho, Milton C., Nussenzveig Lopes, Helena J., Vicol, Vlad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a sequence of Leray-Hopf weak solutions of the 2D Navier-Stokes equations on a bounded domain, in the vanishing viscosity limit. We provide sufficient conditions on the associated vorticity measures, away from the boundary, which ensure that as the viscosity vanishes the sequence converges to a weak solution of the Euler equations. The main assumptions are local interior uniform bounds on the L 1 -norm of vorticity and the local uniform convergence to zero of the total variation of vorticity measure on balls, in the limit of vanishing ball radii.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-019-01398-1