D2D Big Data Privacy-Preserving Framework Based on (a, k)-Anonymity Model

As a novel and promising technology for 5G networks, device-to-device (D2D) communication has garnered a significant amount of research interest because of the advantages of rapid sharing and high accuracy on deliveries as well as its variety of applications and services. Big data technology offers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-11
Hauptverfasser: Zhang, Wenyin, Guo, Feng, Li, Hongtao, Wang, Jie, Cui, Yifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a novel and promising technology for 5G networks, device-to-device (D2D) communication has garnered a significant amount of research interest because of the advantages of rapid sharing and high accuracy on deliveries as well as its variety of applications and services. Big data technology offers unprecedented opportunities and poses a daunting challenge to D2D communication and sharing, where the data often contain private information concerning users or organizations and thus are at risk of being leaked. Privacy preservation is necessary for D2D services but has not been extensively studied. In this paper, we propose an (a, k)-anonymity privacy-preserving framework for D2D big data deployed on MapReduce. Firstly, we provide a framework for the D2D big data sharing and analyze the threat model. Then, we propose an (a, k)-anonymity privacy-preserving framework for D2D big data deployed on MapReduce. In our privacy-preserving framework, we adopt (a, k)-anonymity as privacy-preserving model for D2D big data and use the distributed MapReduce to classify and group data for massive datasets. The results of experiments and theoretical analysis show that our privacy-preserving algorithm deployed on MapReduce is effective for D2D big data privacy protection with less information loss and computing time.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/2076542