A Risk-Based Multisensor Optimization Scheduling Method for Target Threat Assessment

The reasonable scheduling of multisensor systems to maximize combat benefits has become a research hotspot in the field of sensor management. To minimize the uncertainty in the threat level of targets and improve the survivability of sensors, a risk-based multisensor scheduling method is proposed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-14
Hauptverfasser: Zhang, Yunpu, Shan, Ganlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reasonable scheduling of multisensor systems to maximize combat benefits has become a research hotspot in the field of sensor management. To minimize the uncertainty in the threat level of targets and improve the survivability of sensors, a risk-based multisensor scheduling method is proposed in this paper. In this scheduling problem, the best sensors are systematically selected to observe targets for the trade-off between the threat assessment risk and the emission risk. First, the scheduling problem is modelled as a partially observable Markov decision process (POMDP) for target threat assessment. Second, the calculation methods of the threat assessment risk and the emission risk are proposed to quantify the potential loss caused by the uncertainty in the threat level of targets and the emission of sensors. Then, a nonmyopic sensor scheduling objective function is built to minimize the total risk which is the weighted sum of the threat assessment risk and the emission risk. Furthermore, to solve the high complexity computational problem in optimization, a decision tree search algorithm based on branch pruning is designed. Finally, simulations are conducted, and the results show that the proposed algorithm can significantly reduce the searching time and memory consumption in optimization compared with those of traditional algorithms, and the proposed method has a better risk control effect than the existing sensor scheduling methods.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/2043727