Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite

Inferior mechanical properties are hindering the growth of using natural fibre reinforced polymeric composites in many structural applications. One of the popular solutions to this issue being reported in the literature is the addition of nano or micro reinforcements such as carbon nanotubes, cerami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2019-11, Vol.26 (17), p.9057-9069
Hauptverfasser: Rehman, Muhammad Muslim, Zeeshan, Muhammad, Shaker, Khubab, Nawab, Yasir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inferior mechanical properties are hindering the growth of using natural fibre reinforced polymeric composites in many structural applications. One of the popular solutions to this issue being reported in the literature is the addition of nano or micro reinforcements such as carbon nanotubes, ceramic particles, glass particles, clay, rubber additive etc., which is expensive. Furthermore, questions are raised over biodegradability of said composites. The current study investigated the effect of micro-crystalline cellulose (MCC) particles and alkaline treatment on the tensile, bending and impact properties of jute woven fabric reinforced bio-epoxy composite. The composite samples were made by compression moulding using manufacturer provided curing conditions. Alkaline treatment of jute fabric was found to have positive relationships with tensile and flexural properties, whereas it had negative with the impact strength of bio-composite. It is found that up to 7% addition of MCC particles, tensile, bending and charpy impact strength were improved by 48%, 52% and 100% respectively. Beyond this percentage, the mechanical properties were found to be deteriorated.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-019-02679-4