An identity with derivations in prime rings

Let R be a prime ring with center Z(R), and d a derivation of R. Suppose that (d[x, y]k)n - m[x, y]k ∈ Z(R) for all x,y ∈ R, where m ≠ n,k ≥ 1 are fixed integers. Then d = 0 or R satisfies s4, the standard identity in four variables. In the case (d[x,y]k)n - m[x, y]k = 0 for all x,y ∈ R, then d = 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical notes (Miskolci Egyetem (Hungary)) 2018, Vol.19 (2), p.899-905
1. Verfasser: Huang, Shuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a prime ring with center Z(R), and d a derivation of R. Suppose that (d[x, y]k)n - m[x, y]k ∈ Z(R) for all x,y ∈ R, where m ≠ n,k ≥ 1 are fixed integers. Then d = 0 or R satisfies s4, the standard identity in four variables. In the case (d[x,y]k)n - m[x, y]k = 0 for all x,y ∈ R, then d = 0 or R is commutative.
ISSN:1787-2405
1787-2413
DOI:10.18514/MMN.2018.1529