Terahertz pulse induced transitions between ionic and neutral phases and electronic polarization reversal in TTF-CA

We have investigated the terahertz (THz)-pulse-induced dynamics of tetrathiafulvalene-p-chloranil near the boundary between the ionic and neutral phases with the use of exact numerical calculations of an extended Hubbard model coupled with lattice motion. For the ionic phase, when the applied electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-07, Vol.100 (3), p.035116, Article 035116
Hauptverfasser: Ohmura, Shu, Mase, Tomohito, Takahashi, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated the terahertz (THz)-pulse-induced dynamics of tetrathiafulvalene-p-chloranil near the boundary between the ionic and neutral phases with the use of exact numerical calculations of an extended Hubbard model coupled with lattice motion. For the ionic phase, when the applied electric field of the THz pulse opposes the electronic contribution to the electric polarization (electronic polarization) P¯el of the ground state and the maximum amplitude of electric field is greater than a threshold value, the THz-pulse excited state changes as IA→N→IB→N→IA→N→⋯(IA ground-state case) or IB→N→IA→N→IB→N→⋯(IB ground-state case), where N shows the neutral state, IA(IB) shows the ionic state with P¯el0), and the phase of the bond-length alternation of IA is opposite to that of IB. For the neutral phase, when the maximum amplitude of the electric field is greater than a threshold value, the THz-pulse excited state changes as N→IB→N→IA→N→IB→⋯ (positive electric field case) or N→IA→N→IB→N→IA→⋯ (negative electric-field case). The phase transitions and electronic polarization reversal are driven by time variation of the lattice order parameter, which indicates the magnitude and phase of the bond-length alternation, and the lattice motion is induced by THz-pulse excitation through the electron–lattice coupling. Transitions between the ionic and neutral phases occur and electronic polarization reverses on a picosecond timescale together with the realizable magnitude of the THz pulse both in the ionic and neutral phases near the phase boundary.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.100.035116