Toward any-language zero-shot topic classification of textual documents

In this paper, we present a zero-shot classification approach to document classification in any language into topics which can be described by English keywords. This is done by embedding both labels and documents into a shared semantic space that allows one to compute meaningful semantic similarity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2019-09, Vol.274, p.133-150
Hauptverfasser: Song, Yangqiu, Upadhyay, Shyam, Peng, Haoruo, Mayhew, Stephen, Roth, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a zero-shot classification approach to document classification in any language into topics which can be described by English keywords. This is done by embedding both labels and documents into a shared semantic space that allows one to compute meaningful semantic similarity between a document and a potential label. The embedding space can be created by either mapping into a Wikipedia-based semantic representation or learning cross-lingual embeddings. But if the Wikipedia in the target language is small or there is not enough training corpus to train a good embedding space for low-resource languages, then performance can suffer. Thus, for low-resource languages, we further use a word-level dictionary to convert documents into a high-resource language, and then perform classification based on the high-resource language. This approach can be applied to thousands of languages, which can be contrasted with machine translation, which is a supervision-heavy approach feasible for about 100 languages. We also develop a ranking algorithm that makes use of language similarity metrics to automatically select a good pivot or bridging high-resource language, and show that this significantly improves classification of low-resource language documents, performing comparably to the best bridge possible.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2019.02.002