Pseudo-parallel surfaces of S c n × R and H c n × R

In this work we give a characterization of pseudo-parallel surfaces in Scn×R and Hcn×R, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n=3, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2019-01, Vol.50 (3), p.705-715
Hauptverfasser: Lobos, G A, Tassi, M P, Yucra Hancco, A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we give a characterization of pseudo-parallel surfaces in Scn×R and Hcn×R, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n=3, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when n≥4 we give examples of pseudo-parallel surfaces with non vanishing normal curvature.
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-018-00126-9