Pseudo-parallel surfaces of S c n × R and H c n × R
In this work we give a characterization of pseudo-parallel surfaces in Scn×R and Hcn×R, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n=3, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of p...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Brasileira de Matemática 2019-01, Vol.50 (3), p.705-715 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we give a characterization of pseudo-parallel surfaces in Scn×R and Hcn×R, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n=3, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when n≥4 we give examples of pseudo-parallel surfaces with non vanishing normal curvature. |
---|---|
ISSN: | 1678-7544 1678-7714 |
DOI: | 10.1007/s00574-018-00126-9 |