On Fully Idempotent Homomorphisms of Abelian Groups
We provide some examples of irregular fully idempotent homomorphisms and study the pairs of abelian groups A and B for which the homomorphism group Hom( A, B ) is fully idempotent. We show that if B is a torsion group or a mixed split group and if at least one of the groups A or B is divisible then...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2019-07, Vol.60 (4), p.727-733 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide some examples of irregular fully idempotent homomorphisms and study the pairs of abelian groups
A
and
B
for which the homomorphism group Hom(
A, B
) is fully idempotent. We show that if
B
is a torsion group or a mixed split group and if at least one of the groups
A
or
B
is divisible then the full idempotence of the homomorphism group implies its regularity. If at least one of the groups
A
or
B
is a reduced torsion-free group and their homomorphism groups are nonzero then the group is not fully idempotent. The study of fully idempotent groups Hom(
A, A
) comes down to reduced mixed groups A with dense elementary torsion part. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446619040189 |