Diagonal Involutions and the Borsuk–Ulam Property for Product of Surfaces

In this work we study a generalization of the Borsuk–Ulam Theorem. Namely, we replace the sphere S n by a product of two closed surfaces M 2 × N 2 equipped with the diagonal involution T × S where T and S are free involutions on M 2 and N 2 , respectively, and the indexes i ( M 2 , T ) = i ( N 2 , S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2019-09, Vol.50 (3), p.771-786
Hauptverfasser: Gonçalves, Daciberg Lima, dos Santos, Anderson Paião
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study a generalization of the Borsuk–Ulam Theorem. Namely, we replace the sphere S n by a product of two closed surfaces M 2 × N 2 equipped with the diagonal involution T × S where T and S are free involutions on M 2 and N 2 , respectively, and the indexes i ( M 2 , T ) = i ( N 2 , S ) = 2 . Then we compute the index of the pair ( M 2 × N 2 , T × S ) and we obtain a Borsuk-Ulam Theorem for M 2 × N 2 .
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-018-0098-4