Diagonal Involutions and the Borsuk–Ulam Property for Product of Surfaces
In this work we study a generalization of the Borsuk–Ulam Theorem. Namely, we replace the sphere S n by a product of two closed surfaces M 2 × N 2 equipped with the diagonal involution T × S where T and S are free involutions on M 2 and N 2 , respectively, and the indexes i ( M 2 , T ) = i ( N 2 , S...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Brasileira de Matemática 2019-09, Vol.50 (3), p.771-786 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we study a generalization of the Borsuk–Ulam Theorem. Namely, we replace the sphere
S
n
by a product of two closed surfaces
M
2
×
N
2
equipped with the diagonal involution
T
×
S
where
T
and
S
are free involutions on
M
2
and
N
2
, respectively, and the indexes
i
(
M
2
,
T
)
=
i
(
N
2
,
S
)
=
2
. Then we compute the index of the pair
(
M
2
×
N
2
,
T
×
S
)
and we obtain a Borsuk-Ulam Theorem for
M
2
×
N
2
. |
---|---|
ISSN: | 1678-7544 1678-7714 |
DOI: | 10.1007/s00574-018-0098-4 |