Structure and magnetism of collapsed lanthanide elements

Using synchrotron x-ray diffraction, we show that the long-accepted monoclinic structure of the "collapsed" high-pressure phases reported in seven lanthanide elements [Nd, Tb, Gd, Dy, Ho, Er, and (probably) Tm] is incorrect. In Tb, Gd, Dy, Ho, Er, and Tm we show that the collapsed phases h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-07, Vol.100 (2), p.1, Article 024107
Hauptverfasser: McMahon, M. I., Finnegan, S., Husband, R. J., Munro, K. A., Plekhanov, E., Bonini, N., Weber, C., Hanfland, M., Schwarz, U., Macleod, S. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using synchrotron x-ray diffraction, we show that the long-accepted monoclinic structure of the "collapsed" high-pressure phases reported in seven lanthanide elements [Nd, Tb, Gd, Dy, Ho, Er, and (probably) Tm] is incorrect. In Tb, Gd, Dy, Ho, Er, and Tm we show that the collapsed phases have a 16-atom orthorhombic structure (oF16) not previously seen in the elements, whereas in Nd we show that it has an eight-atom orthorhombic structure (oF8) previously reported in several actinide elements. oF16 and oF8 are members of a new family of layered elemental structures, the discovery of which reveals that the high-pressure structural systematics of the lanthanides, actinides, and group-III elements (Sc and Y) are much more related than previously imagined. Electronic structure calculations of Tb, combined with quantum many-body corrections, confirm the experimental observation, and calculate that the collapsed orthorhombic phase is a ferromagnet, nearly degenerate with an antiferromagnetic state between 60 and 80 GPa. We find that the magnetic properties of Tb survive to the highest pressures obtained in our experiments (110 GPa). Further calculations of the collapsed phases of Gd and Dy, again using the correct crystal structure, show the former to be a type-A antiferromagnet, whereas the latter is ferromagnetic.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.100.024107