Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy

Operations of lithium-ion batteries have long been limited to a narrow temperature range close to room temperature. At elevated temperatures, cycling degradation speeds up due to enhanced side reactions, especially when high-reactivity lithium metal is used as the anode. Here, we demonstrate enhance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2019-08, Vol.4 (8), p.664-670
Hauptverfasser: Wang, Jiangyan, Huang, William, Pei, Allen, Li, Yuzhang, Shi, Feifei, Yu, Xiaoyun, Cui, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Operations of lithium-ion batteries have long been limited to a narrow temperature range close to room temperature. At elevated temperatures, cycling degradation speeds up due to enhanced side reactions, especially when high-reactivity lithium metal is used as the anode. Here, we demonstrate enhanced performance in lithium metal batteries operated at elevated temperatures. In an ether-based electrolyte at 60 °C, an average Coulombic efficiency of 99.3% is obtained and more than 300 stable cycles are realized, but, at 20 °C, the Coulombic efficiency drops dramatically within 75 cycles, corresponding to an average Coulombic efficiency of 90.2%. Cryo-electron microscopy reveals a drastically different solid electrolyte interface nanostructure emerging at 60 °C, which maintains mechanical stability, inhibits continuous side reactions and guarantees good cycling stability and low electrochemical impedance. Furthermore, larger lithium particles grown at the elevated temperature reduce the electrolyte/electrode interfacial area, which decreases the per-cycle lithium loss and enables higher Coulombic efficiencies. The performance of Li-ion batteries deteriorates at elevated temperatures due to increased activity of electrode materials and parasitic reactions. Here Yi Cui and colleagues report much-improved battery cyclability at 60 °C and use cryo-electron microscopy to shed light on the origin of the phenomenon.
ISSN:2058-7546
2058-7546
DOI:10.1038/s41560-019-0413-3