Using block designs in crossing number bounds
The crossing number CR ( G ) of a graph G = ( V , E ) is the smallest number of edge crossings over all drawings of G in the plane. For any k ≥ 1, the k‐planar crossing number of G , CR k ( G ), is defined as the minimum of CR ( G 1 ) + CR ( G 2 ) + ⋯ + CR ( G k ) over all graphs G 1 , G 2 , … , G k...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial designs 2019-10, Vol.27 (10), p.586-597 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The crossing number
CR
(
G
) of a graph
G
=
(
V
,
E
) is the smallest number of edge crossings over all drawings of
G in the plane. For any
k
≥
1, the
k‐planar crossing number of
G
,
CR
k
(
G
), is defined as the minimum of
CR
(
G
1
)
+
CR
(
G
2
)
+
⋯
+
CR
(
G
k
) over all graphs
G
1
,
G
2
,
…
,
G
k with
∪
i
=
1
k
G
i
=
G. Pach et al [Comput. Geom.: Theory Appl. 68 (2018), pp. 2–6] showed that for every
k
≥
1, we have
CR
k
(
G
)
≤
(
2
/
k
2
−
1
/
k
3
)
CR
(
G
) and that this bound does not remain true if we replace the constant
2
/
k
2
−
1
/
k
3 by any number smaller than
1
/
k
2. We improve the upper bound to
(
1
/
k
2
)
(
1
+
o
(
1
)
) as
k
→
∞. For the class of bipartite graphs, we show that the best constant is exactly
1
/
k
2 for every
k. The results extend to the rectilinear variant of the
k‐planar crossing number. |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.21665 |