Identification of physical nonlinearities of a hybrid aeroelastic–pressure balance

This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2019-10, Vol.98 (1), p.95-111
Hauptverfasser: Chen, Zengshun, Tse, K. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue 1
container_start_page 95
container_title Nonlinear dynamics
container_volume 98
creator Chen, Zengshun
Tse, K. T.
description This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind pressure and aeroelastic response of a test model. A nonlinear identification method of equivalent linearization approximation was firstly developed on the basis of the averaging method of Krylov–Bogoliubov to model the physical nonlinearity of a weakly nonlinear system. Subsequently, the nonlinear physical frequency and damping were identified using a modified Morlet wavelet transform method and a constant variant method. Using these methods, the physical nonlinear frequency and damping of the HAPB system with a vertical test model were determined and were validated by a time domain method and the Newmark - β method. Finally, the nonlinear mechanical frequency and damping of the HAPB system with inclined test models were determined in a similar way. This study has not only provided an identification method for determining physical nonlinearities of weakly nonlinear system, but presented the detail for developing a hybrid aeroelastic–pressure balance used in wind tunnel.
doi_str_mv 10.1007/s11071-019-05173-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2272481006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272481006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a196042b81b3bfda8cbe5ada6c8d2bce4e5d1b64543690c7a3e62764c9395e813</originalsourceid><addsrcrecordid>eNp9kM1KxDAQx4MouK6-gKeC5-okadPmKIsfC4KXFfYWknTqZqlpTbqHvfkOvqFPYtYK3jzNDPP_gB8hlxSuKUB1EymFiuZAZQ4lrXheHpEZLdPChFwfkxlIVuQgYX1KzmLcAgBnUM_IatmgH13rrB5d77O-zYbNPqazy3zvO-dRBzc6jIeXzjZ7E1yTaQw9djqOzn59fA4BY9wFzIzutLd4Tk5a3UW8-J1z8nJ_t1o85k_PD8vF7VNuueBjrqkUUDBTU8NN2-jaGix1o4WtG2YsFlg21IiiLLiQYCvNUbBKFFZyWWJN-ZxcTblD6N93GEe17XfBp0rFWMWKOrERScUmlQ19jAFbNQT3psNeUVAHemqipxI99UNPlcnEJ1NMYv-K4S_6H9c3wKh0tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272481006</pqid></control><display><type>article</type><title>Identification of physical nonlinearities of a hybrid aeroelastic–pressure balance</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Zengshun ; Tse, K. T.</creator><creatorcontrib>Chen, Zengshun ; Tse, K. T.</creatorcontrib><description>This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind pressure and aeroelastic response of a test model. A nonlinear identification method of equivalent linearization approximation was firstly developed on the basis of the averaging method of Krylov–Bogoliubov to model the physical nonlinearity of a weakly nonlinear system. Subsequently, the nonlinear physical frequency and damping were identified using a modified Morlet wavelet transform method and a constant variant method. Using these methods, the physical nonlinear frequency and damping of the HAPB system with a vertical test model were determined and were validated by a time domain method and the Newmark - β method. Finally, the nonlinear mechanical frequency and damping of the HAPB system with inclined test models were determined in a similar way. This study has not only provided an identification method for determining physical nonlinearities of weakly nonlinear system, but presented the detail for developing a hybrid aeroelastic–pressure balance used in wind tunnel.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-019-05173-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aeroelasticity ; Automotive Engineering ; Classical Mechanics ; Control ; Damping ; Dynamical Systems ; Engineering ; Krylov-Bogoliubov method ; Mechanical Engineering ; Model testing ; Morlet wavelet ; Nonlinear systems ; Nonlinearity ; Original Paper ; Suspension systems ; Time domain analysis ; Vibration ; Wavelet transforms ; Wind pressure ; Wind tunnels</subject><ispartof>Nonlinear dynamics, 2019-10, Vol.98 (1), p.95-111</ispartof><rights>The Author(s) 2019</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a196042b81b3bfda8cbe5ada6c8d2bce4e5d1b64543690c7a3e62764c9395e813</citedby><cites>FETCH-LOGICAL-c363t-a196042b81b3bfda8cbe5ada6c8d2bce4e5d1b64543690c7a3e62764c9395e813</cites><orcidid>0000-0002-9678-1037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-019-05173-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-019-05173-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chen, Zengshun</creatorcontrib><creatorcontrib>Tse, K. T.</creatorcontrib><title>Identification of physical nonlinearities of a hybrid aeroelastic–pressure balance</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind pressure and aeroelastic response of a test model. A nonlinear identification method of equivalent linearization approximation was firstly developed on the basis of the averaging method of Krylov–Bogoliubov to model the physical nonlinearity of a weakly nonlinear system. Subsequently, the nonlinear physical frequency and damping were identified using a modified Morlet wavelet transform method and a constant variant method. Using these methods, the physical nonlinear frequency and damping of the HAPB system with a vertical test model were determined and were validated by a time domain method and the Newmark - β method. Finally, the nonlinear mechanical frequency and damping of the HAPB system with inclined test models were determined in a similar way. This study has not only provided an identification method for determining physical nonlinearities of weakly nonlinear system, but presented the detail for developing a hybrid aeroelastic–pressure balance used in wind tunnel.</description><subject>Aeroelasticity</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Damping</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Krylov-Bogoliubov method</subject><subject>Mechanical Engineering</subject><subject>Model testing</subject><subject>Morlet wavelet</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Suspension systems</subject><subject>Time domain analysis</subject><subject>Vibration</subject><subject>Wavelet transforms</subject><subject>Wind pressure</subject><subject>Wind tunnels</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAQx4MouK6-gKeC5-okadPmKIsfC4KXFfYWknTqZqlpTbqHvfkOvqFPYtYK3jzNDPP_gB8hlxSuKUB1EymFiuZAZQ4lrXheHpEZLdPChFwfkxlIVuQgYX1KzmLcAgBnUM_IatmgH13rrB5d77O-zYbNPqazy3zvO-dRBzc6jIeXzjZ7E1yTaQw9djqOzn59fA4BY9wFzIzutLd4Tk5a3UW8-J1z8nJ_t1o85k_PD8vF7VNuueBjrqkUUDBTU8NN2-jaGix1o4WtG2YsFlg21IiiLLiQYCvNUbBKFFZyWWJN-ZxcTblD6N93GEe17XfBp0rFWMWKOrERScUmlQ19jAFbNQT3psNeUVAHemqipxI99UNPlcnEJ1NMYv-K4S_6H9c3wKh0tg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Chen, Zengshun</creator><creator>Tse, K. T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9678-1037</orcidid></search><sort><creationdate>20191001</creationdate><title>Identification of physical nonlinearities of a hybrid aeroelastic–pressure balance</title><author>Chen, Zengshun ; Tse, K. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a196042b81b3bfda8cbe5ada6c8d2bce4e5d1b64543690c7a3e62764c9395e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aeroelasticity</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Damping</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Krylov-Bogoliubov method</topic><topic>Mechanical Engineering</topic><topic>Model testing</topic><topic>Morlet wavelet</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Suspension systems</topic><topic>Time domain analysis</topic><topic>Vibration</topic><topic>Wavelet transforms</topic><topic>Wind pressure</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zengshun</creatorcontrib><creatorcontrib>Tse, K. T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zengshun</au><au>Tse, K. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of physical nonlinearities of a hybrid aeroelastic–pressure balance</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>98</volume><issue>1</issue><spage>95</spage><epage>111</epage><pages>95-111</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind pressure and aeroelastic response of a test model. A nonlinear identification method of equivalent linearization approximation was firstly developed on the basis of the averaging method of Krylov–Bogoliubov to model the physical nonlinearity of a weakly nonlinear system. Subsequently, the nonlinear physical frequency and damping were identified using a modified Morlet wavelet transform method and a constant variant method. Using these methods, the physical nonlinear frequency and damping of the HAPB system with a vertical test model were determined and were validated by a time domain method and the Newmark - β method. Finally, the nonlinear mechanical frequency and damping of the HAPB system with inclined test models were determined in a similar way. This study has not only provided an identification method for determining physical nonlinearities of weakly nonlinear system, but presented the detail for developing a hybrid aeroelastic–pressure balance used in wind tunnel.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-019-05173-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9678-1037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2019-10, Vol.98 (1), p.95-111
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2272481006
source Springer Nature - Complete Springer Journals
subjects Aeroelasticity
Automotive Engineering
Classical Mechanics
Control
Damping
Dynamical Systems
Engineering
Krylov-Bogoliubov method
Mechanical Engineering
Model testing
Morlet wavelet
Nonlinear systems
Nonlinearity
Original Paper
Suspension systems
Time domain analysis
Vibration
Wavelet transforms
Wind pressure
Wind tunnels
title Identification of physical nonlinearities of a hybrid aeroelastic–pressure balance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20physical%20nonlinearities%20of%20a%20hybrid%20aeroelastic%E2%80%93pressure%20balance&rft.jtitle=Nonlinear%20dynamics&rft.au=Chen,%20Zengshun&rft.date=2019-10-01&rft.volume=98&rft.issue=1&rft.spage=95&rft.epage=111&rft.pages=95-111&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-019-05173-5&rft_dat=%3Cproquest_cross%3E2272481006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272481006&rft_id=info:pmid/&rfr_iscdi=true