Identification of physical nonlinearities of a hybrid aeroelastic–pressure balance
This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2019-10, Vol.98 (1), p.95-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study has presented an improved method for determining physical nonlinearities of weakly nonlinear spring-suspension system and successfully applied to a novel hybrid aeroelastic–pressure balance (HAPB) system used in wind tunnel, which can be used for simultaneously obtaining the unsteady wind pressure and aeroelastic response of a test model. A nonlinear identification method of equivalent linearization approximation was firstly developed on the basis of the averaging method of Krylov–Bogoliubov to model the physical nonlinearity of a weakly nonlinear system. Subsequently, the nonlinear physical frequency and damping were identified using a modified Morlet wavelet transform method and a constant variant method. Using these methods, the physical nonlinear frequency and damping of the HAPB system with a vertical test model were determined and were validated by a time domain method and the
Newmark
-
β
method. Finally, the nonlinear mechanical frequency and damping of the HAPB system with inclined test models were determined in a similar way. This study has not only provided an identification method for determining physical nonlinearities of weakly nonlinear system, but presented the detail for developing a hybrid aeroelastic–pressure balance used in wind tunnel. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-019-05173-5 |