A derivatives trading recommendation system: The mid‐curve calendar spread case
Summary Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work is aimed to develop a trading recommendation system, and to apply this system to the so‐ca...
Gespeichert in:
Veröffentlicht in: | Intelligent systems in accounting, finance & management finance & management, 2019-04, Vol.26 (2), p.83-103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Derivative traders are usually required to scan through hundreds, even thousands of possible trades on a daily basis. Up to now, not a single solution is available to aid in their job. Hence, this work is aimed to develop a trading recommendation system, and to apply this system to the so‐called Mid‐Curve Calendar Spread (MCCS) trade. To suggest that such approach is feasible, we used a list of 35 different types of MCCSs; a total of 11 predictive and 4 benchmark models. Our results suggest that linear regression with l1‐regularisation (Lasso) compared favourably to other approaches from a predictive and interpretability point of views. |
---|---|
ISSN: | 1550-1949 2160-0074 |
DOI: | 10.1002/isaf.1445 |