Biangular Gabor frames and Zauner's conjecture

Two decades ago, Zauner conjectured that for every dimension \(d\), there exists an equiangular tight frame consisting of \(d^2\) vectors in \(\mathbb{C}^d\). Most progress to date explicitly constructs the promised frame in various dimensions, and it now appears that a constructive proof of Zauner&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-08
Hauptverfasser: Magsino, Mark, Mixon, Dustin G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two decades ago, Zauner conjectured that for every dimension \(d\), there exists an equiangular tight frame consisting of \(d^2\) vectors in \(\mathbb{C}^d\). Most progress to date explicitly constructs the promised frame in various dimensions, and it now appears that a constructive proof of Zauner's conjecture may require progress on the Stark conjectures. In this paper, we propose an alternative approach involving biangular Gabor frames that may eventually lead to an unconditional non-constructive proof of Zauner's conjecture.
ISSN:2331-8422