Conics associated with totally degenerate curves
Let \(k\) be a field. Let \(X/k\) be a stable curve whose geometric irreducible components are smooth rational curves. Taking Stein factorization of its normalization, we get a conic. We show the conic is non-split in certain cases. As an application, we show for \(g\geq3\), the period and index of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(k\) be a field. Let \(X/k\) be a stable curve whose geometric irreducible components are smooth rational curves. Taking Stein factorization of its normalization, we get a conic. We show the conic is non-split in certain cases. As an application, we show for \(g\geq3\), the period and index of the universal genus \(g\) curve both equal to \(2g-2\). |
---|---|
ISSN: | 2331-8422 |