Asymmetric gating for reducing leakage current in carbon nanotube field-effect transistors
As continued silicon scaling is becoming increasingly challenging, emerging nanotechnologies such as carbon nanotubes (CNTs) are being explored. However, experimental measurements of CNT Field-Effect Transistors (CNFETs) often exhibit substantial off-state leakage current (IOFF), resulting in increa...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-08, Vol.115 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As continued silicon scaling is becoming increasingly challenging, emerging nanotechnologies such as carbon nanotubes (CNTs) are being explored. However, experimental measurements of CNT Field-Effect Transistors (CNFETs) often exhibit substantial off-state leakage current (IOFF), resulting in increased leakage power and potential incorrect logic functionality. In this work, we (1) provide insight into a key component of this off-state leakage current and experimentally demonstrate that it stems from gate-induced drain leakage commonly referred to as GIDL, (2) provide an experimentally calibrated model that closely matches our measured results, and (3) demonstrate a path for mitigating GIDL current by engineering CNFET geometries with asymmetric gates: local back-gate CNFETs whose gate overlaps the source but not the drain. We demonstrate experimentally that this approach can reduce off-state leakage current by >60× at the same bias voltage (implemented across a wide range of scaled CNFETs with gate lengths ranging from >2 μm to 180 nm). This reduced leakage current due to the asymmetric gates translates to additional energy-efficiency benefits for CNFETs. Thus, this work addresses a key challenge facing CNFET-based electronics (while simultaneously providing additional energy-efficiency benefits) and is applicable to a wide-range of emerging one-dimensional and two-dimensional nanomaterials. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5098322 |