Angles of Gaussian primes

Fermat showed that every prime p = 1 mod 4 is a sum of two squares: p = a 2 + b 2 . To any of the 8 possible representations ( a, b ) we associate an angle whose tangent is the ratio b/a. In 1919 Hecke showed that these angles are uniformly distributed as p varies, and in the 1950’s Kubilius proved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2019-08, Vol.232 (1), p.159-199
Hauptverfasser: Rudnick, Zeév, Waxman, Ezra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fermat showed that every prime p = 1 mod 4 is a sum of two squares: p = a 2 + b 2 . To any of the 8 possible representations ( a, b ) we associate an angle whose tangent is the ratio b/a. In 1919 Hecke showed that these angles are uniformly distributed as p varies, and in the 1950’s Kubilius proved uniform distribution in somewhat short arcs. We study fine scale statistics of these angles, in particular the variance of the number of such angles in a short arc. We present a conjecture for this variance, motivated both by a random matrix model, and by a function field analogue of this problem, for which we prove an asymptotic form for the corresponding variance.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-019-1867-5