Microrobot-in-glass for dynamic motion analysis and wider in vitro applications
Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work...
Gespeichert in:
Veröffentlicht in: | Micro & nano letters 2019-07, Vol.14 (8), p.882-886 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microrobots could become a key enabler in life science and medicine research as well as industrial applications. Although they provide high-performance tools for a wide range of applications, their environment and particularly surface forces induce significant challenge for their control. This work introduces an originally integrated microrobot in a permanently sealed glass microfluidic chip. Compared to conventional polymer chips, the glass substrate offers a smooth, stable, and inert surface. It also avoids the typical contamination and fast degradation of organosilicon polymers. In this environment, they demonstrate high-frequency hydrodynamics analysis and control. This strategy offers a high precision platform to study microrobot design and hydrodynamics as well as a transducer module for mapping surfaces and sensing interaction with physical environments. |
---|---|
ISSN: | 1750-0443 1750-0443 |
DOI: | 10.1049/mnl.2019.0006 |