The minimum ABC energy of trees

Let G be a graph of order n, and di be the degree of its i-th vertex. The ABC matrix of G is the matrix of order n whose (i,j)-entry is equal to (di+dj−2)/(didj) if the i-th vertex and the j-th vertex of G are adjacent, and 0 otherwise. The ABC eigenvalues of G are the eigenvalues of its ABC matrix,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-09, Vol.577, p.186-203
Hauptverfasser: Gao, Yubin, Shao, Yanling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph of order n, and di be the degree of its i-th vertex. The ABC matrix of G is the matrix of order n whose (i,j)-entry is equal to (di+dj−2)/(didj) if the i-th vertex and the j-th vertex of G are adjacent, and 0 otherwise. The ABC eigenvalues of G are the eigenvalues of its ABC matrix, and the ABC energy of G is the sum of the absolute values of its ABC eigenvalues. In Chen (2018) [9], the author conjectured that the star has the minimum ABC energy among all trees. In this paper, we prove the conjecture is true.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2019.04.032