SOME RESULTS OF THE -APPROXIMATION PROPERTY FOR BANACH SPACES
Given a Banach operator ideal $\mathcal A$ , we investigate the approximation property related to the ideal of $\mathcal A$ -compact operators, $\mathcal K_{\mathcal A}$ -AP. We prove that a Banach space X has the $\mathcal K_{\mathcal A}$ -AP if and only if there exists a λ ≥ 1 such that for every...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2019-09, Vol.61 (3), p.545-555 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a Banach operator ideal
$\mathcal A$
, we investigate the approximation property related to the ideal of
$\mathcal A$
-compact operators,
$\mathcal K_{\mathcal A}$
-AP. We prove that a Banach space
X
has the
$\mathcal K_{\mathcal A}$
-AP if and only if there exists a λ ≥ 1 such that for every Banach space
Y
and every
R
∈
$\mathcal K_{\mathcal A}$
(
Y
,
X
),
$$
\begin{equation}
R \in \overline {\{SR : S \in \mathcal F(X, X), \|SR\|_{\mathcal K_{\mathcal A}} \leq \lambda \|R\|_{\mathcal K_{\mathcal A}}\}}^{\tau_{c}}.
\end{equation}
$$
For a surjective, maximal and right-accessible Banach operator ideal
$\mathcal A$
, we prove that a Banach space
X
has the
$\mathcal K_{(\mathcal A^{{\rm adj}})^{{\rm dual}}}$
-AP if the dual space of
X
has the
$\mathcal K_{\mathcal A}$
-AP. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089518000356 |