Phase Regulation Strategy of Perovskite Nanocrystals from 1D Orthomorphic NH4PbI3 to 3D Cubic (NH4)0.5Cs0.5Pb(I0.5Br0.5)3 Phase Enhances Photoluminescence
This work reports this first synthesis of 1D orthomorphic NH4PbI3 perovskite nanocrystals (NCs) considering the role of inorganic ammonium ions at the nanoscale. The addition of bromide ions at the halogen site did not improve the photoluminescence properties. Furthermore, the 3D cubic phase of (NH4...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2019-08, Vol.58 (34), p.11642-11646 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work reports this first synthesis of 1D orthomorphic NH4PbI3 perovskite nanocrystals (NCs) considering the role of inorganic ammonium ions at the nanoscale. The addition of bromide ions at the halogen site did not improve the photoluminescence properties. Furthermore, the 3D cubic phase of (NH4)0.5Cs0.5Pb(I0.5Br0.5)3 NCs with bright photoluminescence was synthesized by adding Cs ions into the crystal lattice of (NH4)Pb(I0.5Br0.5)3. Moreover, the photophysical properties of different phase structures were studied using femtosecond transient absorption (FTA) spectroscopy. The ultrafast trap state capture process is a key factor in the change of photoluminescence properties and the cubic phase may be the best structure for photoluminescence. These results suggest that the ammonium ion perovskite (AIP) nanocrystals could be potential materials for optoelectronic applications through A‐site cation substitution.
More than just a phase: NH4PbI3 and (NH4)0.5Cs0.5Pb(I0.5Br0.5)3 perovskite nanocrystals are both synthesized for the first time by a phase regulation strategy. (NH4)0.5Cs0.5Pb(I0.5Br0.5)3 perovskite nanocrystals exhibit markedly enhanced photoluminescence and better stability. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201903121 |