Computing endomorphism rings and Frobenius matrices of Drinfeld modules
Let \(\mathbb{F}_q[T]\) be the polynomial ring over a finite field \(\mathbb{F}_q\). We study the endomorphism rings of Drinfeld \(\mathbb{F}_q[T]\)-modules of arbitrary rank over finite fields. We compare the endomorphism rings to their subrings generated by the Frobenius endomorphism and deduce fr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\mathbb{F}_q[T]\) be the polynomial ring over a finite field \(\mathbb{F}_q\). We study the endomorphism rings of Drinfeld \(\mathbb{F}_q[T]\)-modules of arbitrary rank over finite fields. We compare the endomorphism rings to their subrings generated by the Frobenius endomorphism and deduce from this a refinement of a reciprocity law for division fields of Drinfeld modules proved in our earlier paper. We then use these results to give an efficient algorithm for computing the endomorphism rings and discuss some interesting examples produced by our algorithm. |
---|---|
ISSN: | 2331-8422 |