Enumerating \(k\)-arc-connected orientations
We study the problem of enumerating the \(k\)-arc-connected orientations of a graph \(G\), i.e., generating each exactly once. A first algorithm using submodular flow optimization is easy to state, but intricate to implement. In a second approach we present a simple algorithm with \(O(knm^2)\) time...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problem of enumerating the \(k\)-arc-connected orientations of a graph \(G\), i.e., generating each exactly once. A first algorithm using submodular flow optimization is easy to state, but intricate to implement. In a second approach we present a simple algorithm with \(O(knm^2)\) time delay and amortized time \(O(m^2)\), which improves over the analysis of the submodular flow algorithm. As ingredients, we obtain enumeration algorithms for the \(\alpha\)-orientations of a graph \(G\) in \(O(m^2)\) time delay and for the outdegree sequences attained by \(k\)-arc-connected orientations of \(G\) in \(O(knm^2)\) time delay. |
---|---|
ISSN: | 2331-8422 |