An extension of Berwald's inequality and its relation to Zhang's inequality

In this note prove the following Berwald-type inequality, showing that for any integrable log-concave function \(f:\mathbb R^n\rightarrow[0,\infty)\) and any concave function \(h:L\rightarrow\mathbb [0,\infty)\), where \(L\) is the epigraph of \(-\log \frac{f}{\Vert f\Vert_\infty}\), then $$p\to \le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-08
Hauptverfasser: Alonso-Gutiérrez, David, Bernués, Julio, Bernardo González Merino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note prove the following Berwald-type inequality, showing that for any integrable log-concave function \(f:\mathbb R^n\rightarrow[0,\infty)\) and any concave function \(h:L\rightarrow\mathbb [0,\infty)\), where \(L\) is the epigraph of \(-\log \frac{f}{\Vert f\Vert_\infty}\), then $$p\to \left(\frac{1}{\Gamma(1+p)\int_L e^{-t}dtdx}\int_L h^p(x,t)e^{-t}dtdx\right)^\frac{1}{p} $$ is decreasing in \(p\in(-1,\infty)\), extending the range of \(p\) where the monotonicity is known to hold true. As an application of this extension, we will provide a new proof of a functional form of Zhang's reverse Petty projection inequality, recently obtained in [ABG].
ISSN:2331-8422