Constructing Fast Algorithms by Expanding a Set of Matrices into Rank-1 Matrices

This paper introduces the notion of numerical basis for a numerical space and uses it to establish a relation between a fast algorithm for computing a discrete linear transform and the problem of expanding a given finite set of matrices as a linear combination of rank-1 matrices. It is shown that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2020-03, Vol.39 (3), p.1630-1648
Hauptverfasser: Jerônimo da Silva, G., Campello de Souza, R. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces the notion of numerical basis for a numerical space and uses it to establish a relation between a fast algorithm for computing a discrete linear transform and the problem of expanding a given finite set of matrices as a linear combination of rank-1 matrices. It is shown that the number of multiplications of the algorithm is given by the number of rank-1 matrices in the expansion. Applying this approach, an algorithm for computing three components of the nine-point discrete Fourier transform (DFT) and an algorithm to compute the seven-point DFT with the least possible number of multiplications are shown.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-019-01228-5