Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)
Monolithic cesium ion (Cs + ) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diame...
Gespeichert in:
Veröffentlicht in: | Adsorption : journal of the International Adsorption Society 2019-08, Vol.25 (6), p.1089-1098 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1098 |
---|---|
container_issue | 6 |
container_start_page | 1089 |
container_title | Adsorption : journal of the International Adsorption Society |
container_volume | 25 |
creator | Yoshida, Seiichiro Iwamura, Shinichiroh Ogino, Isao Mukai, Shin R. |
description | Monolithic cesium ion (Cs
+
) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diameter) running through them and with AMP particles partially embedded intact within the channel walls. Because of its honeycomb-like structure, the adsorbent, denoted as AMP silica microhoneycomb (AMP-SMH), achieves a significantly lower pressure drop than a typical column packed with spherical particles with similar diffusion path lengths for Cs
+
when water was passed through it (about 35-times lower). Comparison of breakthrough curves between the AMP-SMH and columns packed with particles by numerical simulation also indicates that AMP-SMH shows shorter length of unused bed values. These results demonstrate that the AMP-SMH shows a high performance in the continuous separation of Cs
+
due to their unique microhoneycomb structure. |
doi_str_mv | 10.1007/s10450-019-00060-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2268781954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268781954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c50c3510de44f224b49bfb89a9cb55e76689baac4e0d8d62f565d8bc2c95ceb63</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8BL3qIpmmTNMdlUVfYRUE9hyRN3SxtU5tWqb_erBW8eRoe8703wwPgPMHXCcb8JiQ4oxjhRCCMMcOIHIBZQjlBOaf8EMywIAJRhvkxOAlhFyHBeDoDH0vf9K4Z_BBQWflPGGyrOtU730BfQmODG2q4V3qEqq59s9e1r0Zd-HbrQ7tVvYUubrSr3JctoGuggiEKo2DtTOe3vrGj8bWGl4vNE3rerK5OwVGpqmDPfuccvN7dvixXaP14_7BcrJHJCOmRodikNMGFzbKSkExnQpc6F0oYTanljOVCK2Uyi4u8YKSkjBa5NsQIaqxm6RxcTLlt598HG3q580PXxJOSEJbzPBE0ixSZqPhsCJ0tZdu5WnWjTLDc9yunfmXsV_70K0k0pZMpRLh5s91f9D-ub_2ef8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268781954</pqid></control><display><type>article</type><title>Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yoshida, Seiichiro ; Iwamura, Shinichiroh ; Ogino, Isao ; Mukai, Shin R.</creator><creatorcontrib>Yoshida, Seiichiro ; Iwamura, Shinichiroh ; Ogino, Isao ; Mukai, Shin R.</creatorcontrib><description>Monolithic cesium ion (Cs
+
) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diameter) running through them and with AMP particles partially embedded intact within the channel walls. Because of its honeycomb-like structure, the adsorbent, denoted as AMP silica microhoneycomb (AMP-SMH), achieves a significantly lower pressure drop than a typical column packed with spherical particles with similar diffusion path lengths for Cs
+
when water was passed through it (about 35-times lower). Comparison of breakthrough curves between the AMP-SMH and columns packed with particles by numerical simulation also indicates that AMP-SMH shows shorter length of unused bed values. These results demonstrate that the AMP-SMH shows a high performance in the continuous separation of Cs
+
due to their unique microhoneycomb structure.</description><identifier>ISSN: 0929-5607</identifier><identifier>EISSN: 1572-8757</identifier><identifier>DOI: 10.1007/s10450-019-00060-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorbents ; Cesium ions ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Engineering Thermodynamics ; Freezing ; Heat and Mass Transfer ; Hydrogels ; Industrial Chemistry/Chemical Engineering ; Microchannels ; Pressure drop ; Separation ; Silicon dioxide ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Adsorption : journal of the International Adsorption Society, 2019-08, Vol.25 (6), p.1089-1098</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c50c3510de44f224b49bfb89a9cb55e76689baac4e0d8d62f565d8bc2c95ceb63</citedby><cites>FETCH-LOGICAL-c422t-c50c3510de44f224b49bfb89a9cb55e76689baac4e0d8d62f565d8bc2c95ceb63</cites><orcidid>0000-0001-5027-493X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10450-019-00060-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10450-019-00060-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yoshida, Seiichiro</creatorcontrib><creatorcontrib>Iwamura, Shinichiroh</creatorcontrib><creatorcontrib>Ogino, Isao</creatorcontrib><creatorcontrib>Mukai, Shin R.</creatorcontrib><title>Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)</title><title>Adsorption : journal of the International Adsorption Society</title><addtitle>Adsorption</addtitle><description>Monolithic cesium ion (Cs
+
) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diameter) running through them and with AMP particles partially embedded intact within the channel walls. Because of its honeycomb-like structure, the adsorbent, denoted as AMP silica microhoneycomb (AMP-SMH), achieves a significantly lower pressure drop than a typical column packed with spherical particles with similar diffusion path lengths for Cs
+
when water was passed through it (about 35-times lower). Comparison of breakthrough curves between the AMP-SMH and columns packed with particles by numerical simulation also indicates that AMP-SMH shows shorter length of unused bed values. These results demonstrate that the AMP-SMH shows a high performance in the continuous separation of Cs
+
due to their unique microhoneycomb structure.</description><subject>Adsorbents</subject><subject>Cesium ions</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Engineering Thermodynamics</subject><subject>Freezing</subject><subject>Heat and Mass Transfer</subject><subject>Hydrogels</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microchannels</subject><subject>Pressure drop</subject><subject>Separation</subject><subject>Silicon dioxide</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0929-5607</issn><issn>1572-8757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8BL3qIpmmTNMdlUVfYRUE9hyRN3SxtU5tWqb_erBW8eRoe8703wwPgPMHXCcb8JiQ4oxjhRCCMMcOIHIBZQjlBOaf8EMywIAJRhvkxOAlhFyHBeDoDH0vf9K4Z_BBQWflPGGyrOtU730BfQmODG2q4V3qEqq59s9e1r0Zd-HbrQ7tVvYUubrSr3JctoGuggiEKo2DtTOe3vrGj8bWGl4vNE3rerK5OwVGpqmDPfuccvN7dvixXaP14_7BcrJHJCOmRodikNMGFzbKSkExnQpc6F0oYTanljOVCK2Uyi4u8YKSkjBa5NsQIaqxm6RxcTLlt598HG3q580PXxJOSEJbzPBE0ixSZqPhsCJ0tZdu5WnWjTLDc9yunfmXsV_70K0k0pZMpRLh5s91f9D-ub_2ef8E</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Yoshida, Seiichiro</creator><creator>Iwamura, Shinichiroh</creator><creator>Ogino, Isao</creator><creator>Mukai, Shin R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5027-493X</orcidid></search><sort><creationdate>20190815</creationdate><title>Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)</title><author>Yoshida, Seiichiro ; Iwamura, Shinichiroh ; Ogino, Isao ; Mukai, Shin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c50c3510de44f224b49bfb89a9cb55e76689baac4e0d8d62f565d8bc2c95ceb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbents</topic><topic>Cesium ions</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Engineering Thermodynamics</topic><topic>Freezing</topic><topic>Heat and Mass Transfer</topic><topic>Hydrogels</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microchannels</topic><topic>Pressure drop</topic><topic>Separation</topic><topic>Silicon dioxide</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Seiichiro</creatorcontrib><creatorcontrib>Iwamura, Shinichiroh</creatorcontrib><creatorcontrib>Ogino, Isao</creatorcontrib><creatorcontrib>Mukai, Shin R.</creatorcontrib><collection>CrossRef</collection><jtitle>Adsorption : journal of the International Adsorption Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Seiichiro</au><au>Iwamura, Shinichiroh</au><au>Ogino, Isao</au><au>Mukai, Shin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)</atitle><jtitle>Adsorption : journal of the International Adsorption Society</jtitle><stitle>Adsorption</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>25</volume><issue>6</issue><spage>1089</spage><epage>1098</epage><pages>1089-1098</pages><issn>0929-5607</issn><eissn>1572-8757</eissn><abstract>Monolithic cesium ion (Cs
+
) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diameter) running through them and with AMP particles partially embedded intact within the channel walls. Because of its honeycomb-like structure, the adsorbent, denoted as AMP silica microhoneycomb (AMP-SMH), achieves a significantly lower pressure drop than a typical column packed with spherical particles with similar diffusion path lengths for Cs
+
when water was passed through it (about 35-times lower). Comparison of breakthrough curves between the AMP-SMH and columns packed with particles by numerical simulation also indicates that AMP-SMH shows shorter length of unused bed values. These results demonstrate that the AMP-SMH shows a high performance in the continuous separation of Cs
+
due to their unique microhoneycomb structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10450-019-00060-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5027-493X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5607 |
ispartof | Adsorption : journal of the International Adsorption Society, 2019-08, Vol.25 (6), p.1089-1098 |
issn | 0929-5607 1572-8757 |
language | eng |
recordid | cdi_proquest_journals_2268781954 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorbents Cesium ions Chemical synthesis Chemistry Chemistry and Materials Science Computer simulation Engineering Thermodynamics Freezing Heat and Mass Transfer Hydrogels Industrial Chemistry/Chemical Engineering Microchannels Pressure drop Separation Silicon dioxide Surfaces and Interfaces Thin Films |
title | Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous-flow%20separation%20of%20cesium%20ion%20by%20ammonium%20molybdophosphate%20immobilized%20in%20a%20silica%20microhoneycomb%20(AMP-SMH)&rft.jtitle=Adsorption%20:%20journal%20of%20the%20International%20Adsorption%20Society&rft.au=Yoshida,%20Seiichiro&rft.date=2019-08-15&rft.volume=25&rft.issue=6&rft.spage=1089&rft.epage=1098&rft.pages=1089-1098&rft.issn=0929-5607&rft.eissn=1572-8757&rft_id=info:doi/10.1007/s10450-019-00060-2&rft_dat=%3Cproquest_cross%3E2268781954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268781954&rft_id=info:pmid/&rfr_iscdi=true |