Continuous-flow separation of cesium ion by ammonium molybdophosphate immobilized in a silica microhoneycomb (AMP-SMH)

Monolithic cesium ion (Cs + ) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adsorption : journal of the International Adsorption Society 2019-08, Vol.25 (6), p.1089-1098
Hauptverfasser: Yoshida, Seiichiro, Iwamura, Shinichiroh, Ogino, Isao, Mukai, Shin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolithic cesium ion (Cs + ) adsorbents were synthesized via the directional freezing of a silica hydrogel containing ammonium molybdophosphate (AMP) particles, followed by freeze-drying. The adsorbents have a honeycomb-like structure with nearly straight microchannels (approximately 21 µm in diameter) running through them and with AMP particles partially embedded intact within the channel walls. Because of its honeycomb-like structure, the adsorbent, denoted as AMP silica microhoneycomb (AMP-SMH), achieves a significantly lower pressure drop than a typical column packed with spherical particles with similar diffusion path lengths for Cs + when water was passed through it (about 35-times lower). Comparison of breakthrough curves between the AMP-SMH and columns packed with particles by numerical simulation also indicates that AMP-SMH shows shorter length of unused bed values. These results demonstrate that the AMP-SMH shows a high performance in the continuous separation of Cs + due to their unique microhoneycomb structure.
ISSN:0929-5607
1572-8757
DOI:10.1007/s10450-019-00060-2