Betti Numbers of Some Circulant Graphs

Let o ( n ) be the greatest odd integer less than or equal to n . In this paper we provide explicit formulae to compute ℕ-graded Betti numbers of the circulant graphs C 2 n (1, 2, 3, 5, …, o ( n )). We do this by showing that this graph is the product (or join) of the cycle C n by itself, and comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2019-09, Vol.69 (3), p.593-607
Hauptverfasser: Makvand, Mohsen Abdi, Mousivand, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let o ( n ) be the greatest odd integer less than or equal to n . In this paper we provide explicit formulae to compute ℕ-graded Betti numbers of the circulant graphs C 2 n (1, 2, 3, 5, …, o ( n )). We do this by showing that this graph is the product (or join) of the cycle C n by itself, and computing Betti numbers of C n * C n . We also discuss whether such a graph (more generally, G * H ) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or S 2 .
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2019.0606-16