Betti Numbers of Some Circulant Graphs
Let o ( n ) be the greatest odd integer less than or equal to n . In this paper we provide explicit formulae to compute ℕ-graded Betti numbers of the circulant graphs C 2 n (1, 2, 3, 5, …, o ( n )). We do this by showing that this graph is the product (or join) of the cycle C n by itself, and comput...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2019-09, Vol.69 (3), p.593-607 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
o
(
n
) be the greatest odd integer less than or equal to
n
. In this paper we provide explicit formulae to compute ℕ-graded Betti numbers of the circulant graphs
C
2
n
(1, 2, 3, 5, …,
o
(
n
)). We do this by showing that this graph is the product (or join) of the cycle C
n
by itself, and computing Betti numbers of
C
n
*
C
n
. We also discuss whether such a graph (more generally,
G * H
) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or
S
2
. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2019.0606-16 |