A Novel Intelligent ARX-Laguerre Distillation Column Estimation Technique

In practical applications, modeling of real systems with unknown parameters such as distillation columns are typically complex. To address issues with distillation column estimation, the system is identified by a proposed intelligent, auto-regressive, exogenous-Laguerre (AI-ARX-Laguerre) technique....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems and applications 2019-04, Vol.11 (4), p.52-60
Hauptverfasser: Piltan, Farzin, TayebiHaghighi, Shahnaz, Jowkar, Somayeh, Bod, Hossein Rashidi, Sahamijoo, Amirzubir, Heo, Jeong-Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In practical applications, modeling of real systems with unknown parameters such as distillation columns are typically complex. To address issues with distillation column estimation, the system is identified by a proposed intelligent, auto-regressive, exogenous-Laguerre (AI-ARX-Laguerre) technique. In this method, an intelligent technique is introduced for data-driven identification of the distillation column. The Laguerre method is used for the removal of input/output noise and decreases the system complexity. The fuzzy logic method is proposed to reduce the system’s estimation error and to accurately optimize the ARX-Laguerre parameters. The proposed method outperforms the ARX and ARX-Laguerre technique by achieving average estimation accuracy improvements of 16% and 9%, respectively.
ISSN:2074-904X
2074-9058
DOI:10.5815/ijisa.2019.04.05