The role of understory phenology and productivity in the carbon dynamics of longleaf pine savannas

Savanna ecosystems contribute ~30% of global net primary production (NPP), but they vary substantially in composition and function, specifically in the understory, which can result in complex responses to environmental fluctuations. We tested how understory phenology and its contribution to ecosyste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecosphere (Washington, D.C) D.C), 2019-04, Vol.10 (4), p.n/a
Hauptverfasser: Wiesner, Susanne, Staudhammer, Christina L., Javaheri, Chloe L., Hiers, J. Kevin, Boring, Lindsay R., Mitchell, Robert J., Starr, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Savanna ecosystems contribute ~30% of global net primary production (NPP), but they vary substantially in composition and function, specifically in the understory, which can result in complex responses to environmental fluctuations. We tested how understory phenology and its contribution to ecosystem productivity within a longleaf pine ecosystem varied at two ends of a soil moisture gradient (mesic and xeric). We used the Normalized Difference Vegetation Index (NDVI) of the understory and ecosystem productivity estimates from eddy covariance systems to understand how variation in the understory affected overall ecosystem recovery from disturbances (drought and fire). We found that the mesic site recovered more rapidly from the disturbance of fire, compared to the xeric site, indicated by a faster increase in NDVI. During drought, understory NDVI at the xeric site decreased less compared to the mesic site, suggesting adaptation to lower soil moisture conditions. Our results also show large variation within savanna ecosystems in the contribution of the understory to ecosystem productivity and recovery, highlighting the critical need to further subcategorize global savanna ecosystems by their structural features, to accurately predict their contribution to global estimates of NPP.
ISSN:2150-8925
2150-8925
DOI:10.1002/ecs2.2675