Quantitative Bessaga–Pełczyński property and quantitative Rosenthal property
We prove that c0 and C(K), where K is a dispersed compact Hausdorff space, enjoy a quantitative version of the Bessaga–Pełczyński property. We also prove that l1 possesses a quantitative version of the Pełczyński property. Finally, we show that L1(μ) has a quantitative version of the Rosenthal prope...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2019-08, Vol.292 (8), p.1685-1700 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that c0 and C(K), where K is a dispersed compact Hausdorff space, enjoy a quantitative version of the Bessaga–Pełczyński property. We also prove that l1 possesses a quantitative version of the Pełczyński property. Finally, we show that L1(μ) has a quantitative version of the Rosenthal property for any finite measure μ. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201800312 |