Quantitative Bessaga–Pełczyński property and quantitative Rosenthal property

We prove that c0 and C(K), where K is a dispersed compact Hausdorff space, enjoy a quantitative version of the Bessaga–Pełczyński property. We also prove that l1 possesses a quantitative version of the Pełczyński property. Finally, we show that L1(μ) has a quantitative version of the Rosenthal prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2019-08, Vol.292 (8), p.1685-1700
Hauptverfasser: Chen, Dongyang, Ruan, Yingbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that c0 and C(K), where K is a dispersed compact Hausdorff space, enjoy a quantitative version of the Bessaga–Pełczyński property. We also prove that l1 possesses a quantitative version of the Pełczyński property. Finally, we show that L1(μ) has a quantitative version of the Rosenthal property for any finite measure μ.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201800312